If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+4y=(143-119)+44y+8y
We move all terms to the left:
4y^2+4y-((143-119)+44y+8y)=0
We add all the numbers together, and all the variables
4y^2+4y-(24+44y+8y)=0
We get rid of parentheses
4y^2+4y-44y-8y-24=0
We add all the numbers together, and all the variables
4y^2-48y-24=0
a = 4; b = -48; c = -24;
Δ = b2-4ac
Δ = -482-4·4·(-24)
Δ = 2688
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2688}=\sqrt{64*42}=\sqrt{64}*\sqrt{42}=8\sqrt{42}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-8\sqrt{42}}{2*4}=\frac{48-8\sqrt{42}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+8\sqrt{42}}{2*4}=\frac{48+8\sqrt{42}}{8} $
| q*q*q*q*q*q*q*q*q*q*q*q*q*q=q-1 | | q*q*q*q*q*q*q*q*q*q*q*q*q*q*q*q*q*q=q-1 | | x^2Y^2-16x-4=0 | | 5/8p=20/8 | | q2=3 | | 20=4y(y-13) | | x=(x+40)180 | | -6x+7(1-x)=-4(-x4) | | -5(4r-6)=5(6-r) | | 7x-1=70/7 | | 20−6+4k=2−2kk= | | 3.6(6.7r-7.4)=63.5 | | 2/2x^2+5x+2=A/(x-1)+B/(x+2) | | v÷2=3 | | -1+3(x+2)=5(1+8x | | 7x×-1=2×+5 | | x÷3=2 | | 2/2x^2+5x+2=A/(2x-1)+B/(x+2) | | w^2+6w-75=0 | | 9u–20=-20 | | 1;4x+3=2 | | x÷2=1 | | -7v+1/3=5 | | -6+3p=8p+2(1-3p | | 3.3(10.8r)=18.6 | | 20+4x=30+10x | | p/7=16/22 | | p/11=16/22 | | X2+5x+4x+20-30=0 | | -12m+-20=-2m-4 | | (30-x)/8=25 | | y=2+5=12 |